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Abstract--A theory is presented for describing the sedimentation of polydisperse suspensions in two- 
dimensional channels having walls that are inclined to the vertical. The theory assumes that the flow is 
laminar and that the suspension consists of spherical beads having small particle Reynolds numbers. The 
suspension may consist of either N distinct species of particles or of a continuum of particle sizes and 
densities. For the sake of simplicity, the analysis is mostly confined to the case in which the hindered 
settling velocity of each particle is given by its Stokes settling velocity multiplied by a function of the total 
local solids concentration. Under these conditions, results are developed that are useful for the design of 
either batch or continuous settling devices. Experimental observations were found to be in good agreement 
with the predictions of the present theory. 

I. INTRODUCTION 

The removal of solid particles from liquid streams by means of gravity settling has application 
in a large variety of industrial processes and, hence, has been the subject of numerous 
theoretical and experimental investigations. Nearly all of these studies have been confined to 
monodisperse suspensions, whereas in most cases of practical inportance the suspensions 
contain particles having a range of settling velocities due to variations in their size, shape and 
density. Moreover, although it is known that the settling rate can be enhanced considerably in 
vessels having inclined walls--see Acrivos & Herbolzhiemer (1979)--to the authors' knowledge 
the effects of such polydispersity on the inclined settling process have not been considered to 
date. In this paper we shall investigate these effects by first confining our attention to the 
sedimentation of a suspension containing N distinct species of spherical particles, with the ith 
species being characterized by its density, pi, and its radius, ai, and shall then extend the 
analysis to include a continuous distribution of particle sizes and densities. We shall restrict our 
attention to the case where the concentration of each species is initially uniform throughout the 
domain (batch settling), or where the feed concentration of each species remains steady 
(continuous settling), and shall consider only those flows for which the Reynolds number based 
on the relative motion between the fluid and the particles is small. 

Before proceeding with the analysis, it is instructive for us to briefly review the known 
results concerning batch sedimentation of bimodal suspensions in containers having vertical 
walls. Originally the vessel is entirely filled with suspension of uniform concentration, but, as 
the settling develops, the faster falling particles move away from the others thereby creating 
two distinct regions within the suspension. The lower region contains both species at their 
initial concentrations, whereas the upper region contains only particles of the slower settling 
species. As was shown by Smith (1966), the volume fraction of the slower species in the upper 
region differs from its initial value and can be calculated from the requirement of particle flux 
continuity across the interface separating the two regions. Smith (1966) derived the simple 
formula needed to evaluate this concentration jump, and extended the result to a polydisperse 
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Figure 1. The different regions which develop during the sedimentation of a suspension containing three 
species of particles: R-l, Region I containins species 1, 2 and 3; R-2, Region 2 containing species 2 and 3; 

R-3, Region 3 containing only species 3; I-l,  interface 1; I-2, interface 2; I-3, interface 3. 

suspension containing N species. We shall see below that these same formulae apply when the 
vessel is inclined. 

The major deficiency in our present understanding of vertical sedimentation of polydisperse 
systems is the lack of an adequate theory for predicting the settling velocity of an individual 
particle in the suspension. Under slow flow conditions, however, it seems reasonable to 

• suppose that the hindered settling velocity of a given species should equal its Stokes settling 
velocity times a function of the local concentration of each of the species present. In fact, 
Lockett & A1-Habbooby (1973, 1974) obtained good agreement with experimental data for 
bidisperse systems by assuming that the fall velocity of a particle relative to the liquid 
depended only on the total local particle concentration and then evaluating this dependence by 
using a known correlation for monodisperse suspensions. To be sure, for systems containing 
large variations in the particle sizes, we would not expect this type of approach to accurately 
describe polydisperse settling phenomena;t however, for relatively narrow size distributions of 
particles, such an approximation should prove successful. In fact, as will be seen presently, the 
assumption that the hindered settling velocity of each particle depends only on the total local 
solids concentration leads to good agreement between our experiments and our theory. 

It is important to bear in mind though that the behavior mentioned above--i.e, the 
partitioning of the suspension into distinct regions--is observed only if the total volume 
fraction of solids is less than some "critical" value which is typically about 0.4. Above this 
concentration, the various species no longer segregate readily, but due to the close packing they 
instea~t settle more or less en masse. In the present study, we shall consider only relatively low 
concentrations where this effect is not important. 

tFor example, consider a suspension consisting of small, equal-sized spheres plus a few very large spheres inter- 
spersed. Each of the small spheres would settle as if in a monodisperse suspension, whereas a large sphere would see a 
different environment, one more like an effective fluid. In general then, the two different-sized spheres would fall at 
different fractions of their Stokes settling velocities. Also, when concentrat~i suspensions contain particles with widely 
varying sizes or densities, lateral segregation of the different species may occur; however, the possible existence of such local 
non-uniformities shall not be considered in the present work. 
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2. DISCRETE POLYDISPERSE SYSTEMS 
Let us examine the settling in an inclined vessel of a suspension having N distinct species of 

solids. As in vertical settling, N different regions are formed within the suspension (see figure 
1). The lower region (Region 1) contains all of the species originally present whereas the region 
above it (Region 2) is devoid of the fastest settling species. In fact, each successive region 
contains one less type of particle so that the uppermost region (Region N) contains only 
particles of the slowest settling species. Of course, in addition to these N regions, concentrated 
sediment appears along the upward facing surface and in the bottom of the vessel; also, clear 
fluid accumulates at the top of the vessel and in a clear-fluid slit beneath the downward facing 
wall of the vessel, similar to that described by Acrivos & HerboLzheimer (1979) for monodis- 
perse suspensions. It is our desire to calculate the concentration of each species present in each 
region and then to derive equations that predict the clarification rate for a given vessel 
geometry. 

2.1 Kinemat ics  

Let us begin our analysis by assuming that the suspension is random and homogeneous on a 
microscale and by defining an average local fluid velocity, ~ ,  (where the * denotes a 

- *  
dimensional quantity) and an average local velocity for each type of particle, ups, all of which 
vary smoothly over distances comparable to the macroscale of the system. We express ~ and 
upi m terms of the bulk average velocity, 6*, and the average slip velocities, "* u ~l, defined as 

N 

~* = (1 - c)fi~' + ~ c ,  ap*,, [2.1a] 
i=1 

and 

_, _, ~,  
u, i=  u p s -  i = 1,2 . . . . .  N,  [2.1b] 

where c~ is the local volume fraction of species i, and c is the total volume fraction of solids, 
i.e. 

N 

c = ~ ci. [2.2] 
i=1 

As is evident in [2.1] we have chosen to define the slip velocities relative to the bulk average 
velocity rather than the average fluid velocity. 

Expressions for the slip velocities simplify considerably when the particle Reynolds numbers 
are negligibly small and when the particle sizes are small compared to the distances over which 
significant variations in the bulk flow occur. With this restriction, and assuming that the effects 
of particle-particle interactions depend only on the total local solids concentration, we can 
define a function f ( c )  so that the slip velocities are given by 

u,i = UoJ(C)~ i = 1, 2 . . . . .  N ,  [2.31 

in which ~ is the unit vector in the direction of gravity, and u o*i is the Stokes settling velocity of 
species i, 

U°i=9 ai ~ g' 

where pt is the density of the fluid,/~ is its viscosity, and g is the gravitational constant. In 
general, f ( c )  equals one for c equal zero and then decreases below unity for non-dilute systems. 
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Owing to the incompressibility of the particles and of fluid, the dimensionless averaged fluid 
and particle continuity equations can be combined to give 

V. ti : 0 [2.4a] 

and 

OCi + - = 
~- f  Upi" Vci - ciV" u~i i = 1, 2 . . . . .  N. [2.4b] 

In the above and in what follows, all quantities have been rendered dimensionless using as 
the characteristic length, i, the initial vertical height, H~, of the suspension (batch settling), or 
the vertical height, H °~*, of Region 1 (continuous settling), and the Stokes settling velocity, u~, 
of the fastest settling particle as the characteristic velocity. Here, we have chosen i =  1 to 
denote the fastest settling species of particles in the original suspension. Finally, on substituting 
[2.3] into [2.4b], we obtain for the particle continuity equations 

d f  
+ uv~ "Vc~ = - C, Uo~=~" V c  i = 1, 2, N .  

Ot u ~  . . . .  
[2.51 

We are now in a position to reach our first conclusion regarding the particle concentrations; 
specifically, that in Region 1, the concentration of each species remains at its initial value, 
c, = C~o, throughout the duration of the settling process.t  This follows from [2.5] which shows 
that the concentration of each species must be constant along its streamlines in this region for 
either batch sedimentation of initially uniform suspensions or for steady-state continuous 
settling where feed with particle concentrations c~ = c~0 is introduced directly into Region 1. 

We now turn our attention to finding the particle concentrations in the remaining N -  1 
regions. We number the N species of particles successively so that species j is the fastest 
settling particle in Region j, or 

ci ~ ) = 0  i = 1 , 2  . . . . .  j - l ,  [2.6] 

where c~ U) is the local concentration of species i in Region j. Furthermore, let Z = h° ) (X ,  t) be 
the equation of interface j which separates Regions j and j + 1 (see figure 1). 

To determine the concentrations in Region 2, we make use of the requirement that the flux 
of each species of particles must be continuous at every point on interface 1. Thus, employing 
[2.1b] and [2.3] and the fact that a must also be continuous, we obtain 

c,<2)[a + uoJ(C<2~)~- 0] .  a = c,<l>[a + UoJ(C"~- 0] .  a 

at Z =  h<l>(x, t) i = 1 , 2  . . . . .  N ,  [2.7] 

where /] is the velocity of the interface and ti is the corresponding unit normal. Of course, as 
was shown above, cj ~l~= ci0 for all i throughout the duration of the settling process. Further- 
more, cl ~z)- 0, so evaluating [2.7] for i = 1 gives 

(~  - L;) " ~ + f ( c ° ~ ) ~  • ~ = 0 at Z = h " ) ( X ,  t) ,  [2.8] 

?This is true everywhere except near the upward-facing surface where the particle streamlines terminate and a 
sediment layer of high concentration forms. Although, as is weft known from the theory of vertical sedimentation of 
monodisperse suspensions (Kynch 1952), this jump in concentration can broaden and cause concentrations to back up 
along particle streamfines, we would not expect this phenomena to occur for dilute suspensions, and in any case the region 
of higher concentration is restricted to the bottom of the vessel and to a thin layer along the upward-facing waft. 
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which is the kinematic conditions governing the position of interface 1. The velocity uol does 
no t explicitly appear in [2.8] because it has a dimensionless value of unity. Equations governing 
the bulk flow field are required in order to determine exactly the position and velocity of the 
interface; however, as we shall see below, they are not needed for the present purposes. 
Finally, substituting [2.8] into [2.7], we obtain 

c Y ) [ U o l ( C % -  f (c"~]  = c[ ')[Uo.d(c%- f ( c % ]  

at Z = h(X, t) i = 2, 3 . . . . .  N. [2.91 

These N -  1 coupled non-linear algebraic equations can be solved to calculate the concen- 
trations in Region 2. We notethat [2.9] are the same conditions as obtained by Smith (1966) for 
the sedimentation of discrete polydisperse suspensions in vessels with vertical walls. 

An iml~ortant consequence of [2.9] is that the jumps in the particle concentrations across 
interface 1 are independent of both position and time. Moreover, since all of the particle 
streamlines in Region 2 originate at interface 1, we conclude, in view of [2.5], that each c[ 2) 
must be equal to its constant value determined by [2.6] or [2.9] at every point in Region 2, 
independent of time. By repeating this argument for each successive region, we conclude that 
the concentrations are constants within any given region and that their values can be deter- 
mined from [2.6] together with the conditions 

c,°+l)[uo.~(c °÷'~) - uo.~(c%l = c,°)[uoJ(c% - ,o.~(c%1 

j = l , 2  . . . . .  N,  i = j , j + l  . . . . .  N.  [2.1Ol 

Finally, the positions of the N interfaces which separate these regions must satisfy kinematic 
conditions analogous to [2.8] which can be expressed as 

oh u) 
ot + {a + Uo~(C%~} • v (h  U)-  Z) = 0 

a t Z = h ° ) ( X , t )  j = l , 2  . . . .  ,N.  [2.111 

It is worth mentioning at this point that a similar analysis would also apply if the hindered 
settling velocity of each species was assumed to depend on the local concentrations of all of the 
individual species present. Specifically, N distinct regions would again be formed within the 
suspension, and the concentrations in each region would be governed by [2.6] and [2.10] except 
that, in this case, the function f would in general be different for each of the N species and 
would depend on the concentrations, radii, and densities of all of the species present in a given 
region. 

Besides completely specifying the concentration field, the results derived so far lead directly 
to the prediction of the settling rate for discrete polydisperse suspensions. In particular we 
consider settling in vessels with fiat, parallel walls, and by integrating the jth equation in [2.11] 
along the jth interface and proceeding in a manner analogous to the monodisperse case--see 
Acrivos & Herbolzheimer (1979)--we obtain 

H°) 0 b ]Z0-  j--l,2 . . . . .  N, [2.121 

where S°)(t) is the dimensionless instantaneous volumetric rate at which suspension devoid of 
species j, j - 1 . . . . .  1 is formed--i.e, the rate at which material crosses the ]th interface--0 is 
the angle of inclination from the vertical, HU)(t) is the vertical height of the jth region (see 
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figure 1), and b is the spacing between the downward facing and the upward facing walls of the 
channel. 

2.2 Batch settling 
For batch sedimentation we are interested in determining the height of each interface and 

the fraction of the suspension settled at any given time. As was discussed by Acrivos & 
Herbolzheimer (1979) for monodisperse settling, it can be shown that the top of each of the N 
regions is horizontal with height HO)(t) and that the remaining portions of the interface are 
stationary and nearly coincide with the downward-facing surface in the limit of large A with 
both R and the aspect ratio of the vessel remaining o(At/3),t where R is a sedimentation 

Reynolds number, and A is the ratio of a sedimentation Grashof number to R, 

R = lOlu°*l A ~ 12g(pl  -- tOy)cO 

Hence, in .this limit, we find 

dH°>dt --" - u°~f(c°))[ 1 + - - b  H~) sin 0], [2.13] 

where 

H~J)= 1 at t =0 ]=1 ,2  . . . . .  N. 

The desired predictions for batch settling are then obtained on using [2.13] in conjunction with 
[2.12]. 

2.3 Steady-state continuous settling 
As was mentioned earlier, the concentrations in each region are governed by [2.10] for 

continuous systems as well as for batch systems provided that feed of uniform composition is 
introduced directly into Region 1. In contrast to batch systems, however, S ~) and H °) are 
time-independent. In particular, the quantity of most interest is S, the volumetric rate of 
formation of particle-free fluid, which is given by [2.12] with ] = N; 

H(m 
S--uoNf(c<m)[1 +-~'--Sin 0 ] c b  0" [2.14] 

This equation can be used to determine the minimum size of equipment required to yield a 
desired settling rate, or conversely, the maximum settling rate obtainable in a #oven vessel. 

3. CONTINUOUS PARTICLE DISTRIBUTIONS 
Let us now turn our attention to the sedimentation of suspensions containing particles that 

have continuous distributions of sizes and densities. Since, as before, we shall assume that the 
slip velocities of the particles relative to the bulk flow can be expressed as their Stokes settling 
velocity, Uo, times a function of the total local concentration, each particle is then uniquely 
characterized by its Stokes settling velocity. Thus, the polydispersity can be described by the 
total local concentration, c, and by the local density function, P(uo), where P(uo)duo is the 
fraction of the particles that have Stokes settling velocities between Uo and uo+duo, and 

Yl'ypically, in any experiment, A is 0(106)-0(10 s) and R is 0(I)-0(10) so that these conditions are easily achieved. 
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cP(uo)duo is the local volume fraction of particles in this range. The density function is 
normalized; 

fU0 UOmax rain P(u°)  duo = 1, [3.1] 

where we have assumed that the fastest settling species has a finite Stokes settling velocity, its 
dimensionless value being Uo m~ = 1. The slowest settling species has a Stokes settling velocity, 
Uo ~ ,  whose value can be anywhere between zero and one; it should be kept in mind, however, 
that our analysis should be expected to be most accurate for narrow distributions. 

As is the case with the sedimentation of discrete polydisperse suspensions, we expect that a 
region in the lower portion of the vessel will form where the total concentration and the density 
function have their initial values co and Po(uo), respectively (see figure 2). The top of this 
region is described by the curve Z = h(Uo m~, X, t), above which none of the fastest settling 
species are present. In fact, the concentration continually decreases and only slower and slower 
settling particles remain as we move up the vessel. At the very top of the suspension region, 
described by Z = h(Uo m~, X, t), only particles of the slowest settling species are present whose 
concentration, as we shall see below, may or may not be  essentially zero, depending on the 
initial concentration and distribution function. Finally, we denote by Z = h(Uo, X, t) the curve 
above which there are no particles of species Uo (here, as in what follows, species [70 refers to 
solid particles having a Stokes settling velocity Uo). It is our aim to find the density function 
and the solids concentration as functions of position and time. As we shall see presently, these 
are constant along any curve Z = h(Uo, X, t)--independent of the vessel geometry and time-- 
with their values being determined solely by Uo, Co and Po(uo). 

Once again we begin by defining an average bulk velocity, 

t Uo~ 
a = (1 - c)a¢ + c / ~  n ap(uo)P(uo) duo, 

JVo 
[3.2] 

Pure fl,,id region . / / - ~ -  

"---./2 A 

Origino[. suspension ~ " ~  / /./,!l_: (U°~n) 

Figure 2. The different regions that develop during the sedimentation of a continuously distributed 
polydisperse suspension. 
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where tip(Uo) is the velocity of species Uo. Also, the slip velocity of species Uo, ~s(Uo), is defined 
a s  

F~,(Uo) = ap(Uo)- ~, [3.3] 

where, as before, we assume that 

f~s(Uo) = uof(c)#. [3.4] 

Using arguments similar to those already employed for the discrete case, we can show that, 
throughout the duration of the settling process, c = co and P(uo) = Po(uo) everywhere along the 
curve Z = h(Uo m~, X, t) and in the suspension region below it provided that, for batch settling 
the suspension is initially uniform with c = co and P(uo) = Po(uo) or that for steady-state 
continuous settling uniform suspension with c = Co and P(uo) = Po(Uo) is fed directly into the 
region below this curve. In order to determine the concentration and the particle distribution in 
the upper portions of the vessel, we consider two adjacent curves, Z =  h(Uo, X, t) and 
Z = h(Uo+ 8Uo, X, t) in the vicinity of X = XI and perform a mass balance of species Uo on the 
small volume element which is bounded by these two curves and by the two stationary vertical 
planes, X = X1 and X =.XI + AX: 

[ce(uo)(U - tip(Uo)). ~A]vo- [cP(uo)(U - fip(uo)) • tiA]vo+SVo 

+ cP(uo)([ap(Uo)" rA]x,+t,x- [ap(Uo) • rA]x,) = 

cP(uo)([O "aA]vo- [ 0 .  aAluo+~Uo), [3.5] 

where 0 is the velocity of a point on one of the two curved surfaces, ti is the corresponding 
unit normal, r is the unit normal in the X-direction, and A is the area of one of the surfaces. 
The l.h.s, of [3.5] is the flux of species Uo through the surfaces of the control volume whereas 
the r.h.s, of [3.5] is the accumulation of species Uo within the control volume. In arriving at [3.5] 
we were motivated by the results of the previous section and have assumed, subject to a 
posteriori justification, that the concentration of each species is constant along any curve 
Z = h(Uo, X, t). 

We now apply the kinematic condition, 

U.  ri = tip(Uo), ti, [3.6] 

along with [3.3], [3.4], and the fact that the bulk flow is incompressible, to [3.5] and take the 
limit as 8Uo--,O to find, 

d(cP(uo)) Uo d(cP(u°)f(c)) = O, [3.7] 
dE " d~ 

where ~ -- Uof(c). The initial conditions are c = Co and P(uo) ffi Po(uo) when Uo = UOm~; these 
conditions along with [3.7] are self-consistent with the above assumption that c and P(uo) are 
constant along the curves Z = h(Uo, X, t), and these latter values can thus be determined from 
[3.7] together with [3.1] as a constraint. Of course, [3.7] applies only for Uomi"< Uo -< Uo, 
whereas for Uo < Uo-< Uo m~ we have P(uo)= 0 along Z = h(Uo, X, t). Finally, the positions of 
these curves of constant composition must satisfy the kinematic conditions (3.6), which can be 
rewritten as, 

Oh(Uo, X, t) F (~ + Uof(c)~). V(h(Uo, X, t) - Z) = O. [3.8] 
Ot 
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In general, knowledge of the bulk flow field is needed in order to solve [3.8]; however, we 
can obtain some very useful information directly. For settling in vessels with straight, parallel 
walls, [3.8] can be integrated to give 

[ H(U°'t)sinO] b 0, [3.9] S(Uo, t) = Vd(c) 1 ~ b C 

where S(Uo, t) is the dimensionless volumetric rate at which suspension crosses the curve 
Z = h(Uo, X, t), and H(Uo, t) is the intercept of this curve with the upward-facing wall. In 
particular, for Uo = Uo =m, [3.9] is the relationship between the height of the very top of the 
suspension and the rate of production of clarified fluid. For steady-state, continuous operation, 
this is the only information required for designing a vessel that can achieve a particular 
clarification rate. In the limit of large A, with A-1/3Hlb < 1 and RA -It3 < 1, we also expect that 
the top of each curve Z = h(Uo, X, t) will be nearly horizontal with a height Z = H(Uo, t) and 
t/aat the remainder of each curve will essentially coincide with the downward facing wall. Under 
these conditions for batch settling, we then have 

dd~-(t Uo, t ) = -  U d ( c ) [ l +  H(b°' t)sin 0], [3Ao] 

where H(Uo, O)= 1. 
Finally, we note that, as was discussed for discrete polydisperse systems, the above analysis 

can easily be extended to include the case where the hindered settling velocity of any particle is 
assumed to depend on the concentration of all the individual particles locally present. 

4. RESULTS, EXPERIMENTS AND DISCUSSION 
Let us now consider a few illustrative examples, and let us also examine the results of 

several settling experiments that were performed in our laboratory in order to test the 
predictions of the present theory. The suspending medium was a synthetic viscous oil, and the 
particles were spherical glass beads. The vessel used in the experiments was 100 cm long and 
had a square cross-section with internal dimensions of 5 cm. This vessel could be tilted to any 
desired angle, and was equipped with inlet and outlet ports so that either batch or continuous 
settling experiments could be performed. 

4.1 Experiments with a biomodal suspension 
In order to test the predictions of Section 2, batch experiments were conducted using a 

suspension containing two types of particles. The slower settling particles (species 2) had a density 
of 2.44 glcm 3 and were carefully sieved between standard 125 and 150 ~m mesh sieves, whereas 
the density of species 1 was 2.99 g/cm 3, and their size range was selected by sieving between 177 
and 219 ~m mesh sieves. The viscosity of the fluid was 0.667 poise and its density 0.992 g/cm 3. The 
initial concentrations were clo = 0.03 and C2o = 0.01 respectively. 

A key assumption of the present theory is that the hindrance effect in polydisperse suspensions 
can be accurately predicted from monodisperse settling data. Thus, before detailed comparisons 
between the theoretical and experimental results could be made, vertical batch settling 
experiments were performed with each of the species individually. The volume fraction of solids 
during the experiment with species 1 was 0.04 while that during the experiment with species 2 was 

* = 0.0427 cm/s and 0.01; the rates of the descent of the interfaces were, respectively, v01 
* u*f(c) is the vertical settling velocity of species i in a suspension v~2 = 0.0159 cm/s, where voi = 

with solids concentration c. These vertical settling velocities were then used to predict the 
concentrations in each region and the rate of fall of the interfaces that developed during the batch 
settling experiments performed with the bimodal system. According to our theory, the concen- 
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trations in Region 1 should remain at their initial values, whereas, in Region 2, cj ¢~ = 0 and 
C2 (2) ---~ 0.011 |. The latter result was obtained by first noting that c t2) = c f  > and then solving [2.10] 
iteratively for ] = 1 and i = 2. As mentioned above, the vertical settling velocity of species 2, 
v*2(c) = u*2f(c), was measured only for c = 0.01, whereas c tl~ = 0.04 and c ~2~ = 0.0111. Corrections 
to the hindered settling rate of species 2 at these different local concentrations were made by 
applying the empirical correlation for monodisperse settling data reported by Barnea & Mizrahi 
(1973), 

(1 - c)  2 [4.1] 
f ( c )  = (1 + c I/3) exp  (5c/3(1 - c))" 

These corrections did not require knowing the mean particle radius or the Stokes settling velocity, 
but were rather computed from the simple formula v*(c') = v*2(c)f(c')/f(c). 

Next, a batch settling experiment was conducted with the walls of the vessel set vertically using 
the above suspension. The height of each interface was measured as a function of time using a 
cathetometer, and the data are shown in figure 3. The solid lines are the theoretical predictions for 
the motion of the two interfaces as determined by [2.13]; clearly our data is in good agreement with 
the theory. This experiment demonstrates that, at least for the present suspension, the 
approximation that the hindrance effect on the particle settling velocities depends only on the total 
concentration is accurate enough for practical purposes. 

From our point of view, however, we are more concerned with the question of whether or 
not the present theory can be used to predict the rate of descent of the interfaces when the 
walls of the vessel are inclined. Using the same suspension, the heights of the two interfaces 
were again measured as functions of time but for angles of inclination of 200 and 40 ° . The data 
are shown in figure 4, and the solid lines are the theoretical curves obtained from [2.13]; here 
also, the agreement is excellent. It should be mentioned that similar experiments were also 
conducted with a suspension containing glass beads with equal densities but with Clo = 0.025, 
al--66/~m and C2o=0.025, a2-41/~m. Again, the experiments were in very close accord 
with our theory. 

4,2 Results for continuous distributions 
During the sedimentation of polydisperse suspensions containing a continuous distribution 

of particles, the particle concentrations are governed by [3.7]. Using several different initial 
distributions, we have solved this equation numerically. Our technique was to start at Uo = 
[30 m~, where the initial conditions were given, and then to decrease U0 by small steps. At each 
new value of Uo, a value for c was guessed, and P(uo) was computed for several values of Uo. 
A standard Newton-type iteration scheme on c was then employed until [3.1] was satisfied. 
Shown in figure 5 are the results of such a computation for Co = 0.10 and three initial 
distributions. Each of these corresponded to spheres having equal densities but whose initial 
size distribution was a rectangle function; for curves (1), (2) and (3), the minimum particle radii 
were, respectively, 25%, 50% and 75% of the maximum particle radii. An interesting result is 
that, for the broadest distribution, the concentration just below the top of suspension, cT, is 
zero, whereas, for the narrower distributions, it is not. This finite concentration at the top of the 
suspension is expected since it should be recalled Rat, for vertical settling, the velocity of the 
top of the suspension is Uomf(c¢) and that of the top of the region containing all species of 
particles is Uo~'~f(co). For sufficiently narrow distributions and sufficiently large Co, it is 
conceivable that the former velocity would be greater than the latter if cT = 0; clearly, this cannot 
be the case. We mentioned also that results similar to those in figure 5 were computed for various 
Co. According to these, as Co was increased, broader distributions yielded non-zero values of cT and 
also cT/co increased for a given initial distribution. 

Of greater interest to us, h0wdver, is the use of results such as those mentioned above for 
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Figure 3. The height of Regions I and 2 vs time for the batch sedimentation of the bimodal suspension in a 
vessel with vertical walls: O, experimental data for Region 1, 4, experimental data for Region 2. The solid 

fines are the corresponding theoretical predictions obtained from [2.13] with 0 = 0 °. 
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Figure 4. The height of Regions 1 and 2 vs time for the batch sedimentation of the bimodal suspension 
when the vessel is inclined: b*=Scm,  and 0=20 ~ and 40°; O, the experimental data for Region i; A, 
experimental data for Region 2. The solid lines are the corresponding theoretical predictions obtained from 

[2.13]. 
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Figure 5. The total local solids concentration as determined from [3.7] and [3.1] for Co = 0.10 and three 
rectangle function initial distributions: (1), (2) and (3) had minimum particle radii of, respectively, 25%, 50% 

and 75% of the maximum particle radii. 

the purpose of designing batch and continuous settling devices. For example, if the suspension 
corresponding to curve (2) of figure 5 were to be batch-settled in a vessel with vertical walls, the 
dimensionless velocity of the top of the suspension would be governed by [3.10] for 0 = 0 ° and 
Uo = Uo m~, and would equal 0.194. In ~ontrast, the top of a monodisperse suspension with 
Co = 0.10 and particles having the average radius of those of the above polydisperse suspension 
would fall with a velocity of 0.259. Thus, a longer time would be required to completely settle 
the polydisperse suspension. On the other hand, the solution of [3.7] can be combined with 
[3.10] to compute the time required to completely settle all of the particles of any given size. 
Then, if the sedimentation was terminated at this point, only spheres smaller than size would 
have remained unsettled, thereby suggesting a mechanism for preferentially separating the 
solids by size. 

Let us now consider the steady-state continuous sedimentation of this same suspension in a 
vessel having inclined walls, which, in light of [3.9] can lead to a large enhancement in the 
settling rate. Let us choose, for example, 0 = 30 ° and a clarification rate such that b = 0.2. Then 
[3.9] can be solved for H(Uo);t since c is known from [3.7] as a function of Uo, we can 
combine these results to predict c as a function of the vertical height in the vessel. The solid 
line in figure 6 shows the result of this calculation, whereas the dashed line is for the 
sedimentation under the same circumstances of the monodisperse suspension described earlier. 
We see that the effect of the polydispersity is to spread out the particles in the upper portion of 
the settling vessel. Thus, if a completely clear overflow was required, the equipment would 
need to have a dimensionless height of 2.91 for the polydisperse suspension compared to only 
2.09 for the monodisperse case. 

So far, we have considered only the case where the overflow is located above the 
suspension region. If a certain tolerance of solids concentration was allowed in the overflow, a 

tThis calculation requires knowing S(Uo). Of course, S(Uomir~ is the rate of production of clear fluid; S(Uo) differs from 
S(Uo m~) by the dimensionless volumetric rate at which concentrated sediment flows down the upward facing wall at 

Z = 1t([Io). Calculation of this sodiment flow rate is beyond the scope of the present work, but it is briefly discussed by 
Herbolzheimer (1980). For the dilute suspensions and the relatively narrow distributions considered presently, however, 
S(Uo) can be set equal to the rate of production of clear fluid for all practical purposes. 
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Figure 6. The total local solids concentration vs height for steady-state continuous settling with Co = 0.10, 
b = 0.2 and = 30 °. The solid line is for distribution (2) of figure 5 as determined from [3.91, whereas the 

dashed line corresponds to the monodisperse case. 

shorter vessel could be used, and its required height could then be calculated by performing a 
mass balance on the clear-fluid and the suspension entering the overflow. Finally, we point out 
that placing an overflow port below the top of the suspension can be used as another means of 
preferentially separating a certain size range of particles. 

It was observed during the batch sedimentation experiments described earlier tl~at the top of 
each suspension region for both the bidisperse and monodisperse experiments became somewhat 
fuzzy as the suspensions settled. This spreading of the interfaces appeared to be even more 
pronounced for steady-state continuous settling experiments, and a likely explanation is that the 
particles of either species were not all exactly of the same size but actually represented a 
continuous distribution (albeit a narrow one) of sizes. 

In order to see if the observed spreading described above could be quantitatively predicted by 
the results of section 3, a series of steady-state continuous inclined settling experiments was 
performed in our laboratory using the particles of species 2 described in section 4.1. Since these 
beads were already sieved between the adjacent 125 and 150 ~m mesh standard sieves, it was 
impractical to further divide the particles into several much more narrow fractions and to measure 
directly the monodisperse settling velocities. It was decided therefore to measure instead the 
particle size distribution and then to use correlations available in the literature/or monodisperse 
suspensions in order to predict the hindered settling velocities. Sample particle sizes were 
determined with the aid of a microscope, and it was found that the data were well represented by a 
normal or "bell-shaped" size distribution function having a mean radius of 66 p and a standard 
deviation of 3 ~m. The density function was truncated at a maximum radius of 75/~m because all 
particles were sieved through a 150 ~m screen. In figure 7 we have shown the results of 
steady-state settling experiments that had suspension with solids volume fraction of 0.02 fed in 
near the bottom of the vessel, a clear-fluid overflow rate of 2.57 cm 3 sec -~, and angles of inclination 
from the vertical of 20 °, 30 ° and 40 °. The suspending fluid had a viscosity of 0.60 poise and its 
density was 1.09 g/cm ~. The total solids concentration was determined experimentally at any 
location along the vessel by shining a collimated light source through the vessel and then measuring 
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Figure 7. The total local solids concentration vs height for steady-state continuous settling of a normal 
distribution of particle sizes with Co ffi 0.02 and S* ffi 2.20 cm3/sec. I ,  experimental data for 0--20°; I ,  
experimental data for 0 = 30°; A, experimental data for 0--40°: The solid lines are the corresponding 

experimental predictions obtained from [3.9]. 

the intensity of the transmitted light. The solid lines are the theoretical predictions with f(c) given 
by [4.1], whereas, for the dashed lines, the correlation of Richardson & Zaki (1954), 

f(c) = (1 - c)", [4.2] 

was used to determine f(c), where n was chosen equal to 4.87 as suggested by Garside and 
AI-Dibouni (1977). 

In the lower portion of the vessel, where the solids concentration is predicted to be the same as 
that of the feed, the measured concentrations gradually decrease to about 15% below this value. In 
the upper portion of the vessel, where the concentration should decrease rapidly, the experimental 
points fell between the theoretical curves obtained using [4.1] and [4.2]. In fact the measurements 
lay closer to the latter curve which is somewhat surprising since vertical settling data reported in 
the literature at low concentrations are better represented by [4.1] than by [4.2] (see Garside & 
AI-Dibouni (1977) and Barnea & Mizrahi (1973) for a discussion of the available experimental data). 
Similar results were also found when our experiments were repeated with co = 0.05. One possible 
explanation for the observed concentration profiles of figure 7 is that the slip velocities of the 
particles is increased during continuous inclined settling because the resulting shear flow induces 
microscale structure or clumping of the particles; clearly, more data are needed to investigate this 
possibility. 
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